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Abstract

This paper examines the degrees of correlation among vocal-tract and facial movement data and the speech

acoustics. Multilinear techniques are applied to support the claims that facial motion during speech is largely a by-

product of producing the speech acoustics and further that the spectral envelope of the speech acoustics can be better

estimated by the 3D motion of the face than by the midsagittal motion of the anterior vocal-tract (lips, tongue and jaw).

Experimental data include measurements of the motion of markers placed on the face and in the vocal-tract, as well as

the speech acoustics, for two subjects. The numerical results obtained show that, for both subjects, 91% of the total

variance observed in the facial motion data could be determined from vocal-tract motion by means of simple linear

estimators. For the inverse path, i.e. recovery of vocal-tract motion from facial motion, the results indicate that about

80% of the variance observed in the vocal-tract can be estimated from the face. Regarding the speech acoustics, it is

observed that, in spite of the nonlinear relation between vocal-tract geometry and acoustics, linear estimators are

su�cient to determine between 72 and 85% (depending on subject and utterance) of the variance observed in the RMS

amplitude and LSP parametric representation of the spectral envelope. A dimensionality analysis is also carried out,

and shows that between four and eight components are su�cient to represent the mappings examined. Finally, it is

shown that even the tongue, which is an articulator not necessarily coupled with the face, can be recovered reasonably

well from facial motion since it frequently displays the same kind of temporal pattern as the jaw during speech. Ó 1998

Elsevier Science B.V. All rights reserved.
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1. Introduction

During speech production, the motion of the
vocal-tract shapes the speech acoustics. Recently,
our work has focused on the implications of the
simple notion that con®guring the vocal-tract to
shape the acoustic signal simultaneously deforms

the face through the positioning of the jaw, shap-
ing of the lips, and motion of the cheeks (Vati-
kiotis-Bateson et al., 1996b). Thus, there are
visible correlates to the speech that arise as a direct
consequence of articulator motion and these cor-
relates are distributed over a much larger region of
the face than just the immediate vicinity of the oral
aperture (Vatikiotis-Bateson and Yehia, 1996,
1997; Yehia et al., 1997).

Several speci®c questions associated with the
fact that the speech acoustics and the facial motion
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are direct and concurrent consequences of vocal-
tract motion are addressed in this paper: Can the
speech acoustics and facial motion be predicted
from vocal-tract motion? Can vocal-tract motion
be recovered from the speech acoustics or from
facial motion? Is it possible to determine the speech
acoustics solely from facial motion? Can the speech
acoustics be used to estimate facial motion?

These questions have already been partially
addressed in the literature, particularly concerning
the relation of vocal-tract articulation and the
speech acoustics. For instance, speech acoustics
determination from vocal-tract shape is ap-
proached in classic texts (Stevens and House, 1955;
Fant, 1960) and in more recent papers on articu-
latory synthesis (Mermelstein, 1973; Rubin et al.,
1981; Maeda, 1982; Sondhi and Schroeter, 1987;
Scully, 1990; Lin, 1990). The inversion of the ar-
ticulatory-to-acoustic mapping is another inter-
esting problem which has received considerable
attention (Atal et al., 1978; Schroeter and Sondhi,
1991; Hogden, 1993; Shirai, 1993; McGowan,
1994; Badin et al., 1995; Yehia et al., in review). A
good survey on this issue is found in Schroeter and
Sondhi (1994). The examination of facial motion
and its relations to vocal-tract behavior and
acoustic signals is new. It changes considerably the
domain of speech analysis and raises interesting
possibilities for our understanding of the relation
between speech production and multimodal speech
perception.

The objective of this paper is to analyze to what
extent linear mappings can express the various
relations among vocal tract and facial motion, and
the speech acoustics (Fig. 1). Using experimental
measures for all three levels of observation, we ®rst
show that facial motion is highly predictable from
vocal-tract motion, but that vocal-tract motion is
not as well recovered from motion of the face.
Then, we present the somewhat surprising results
that a considerable part of the speech acoustics can
be linearly predicted from the 3D facial motion
and further that the quality of the prediction is as
good or better than when the acoustics are linearly
estimated from the midsagittal motion of the lips,
jaw and tongue.

Before proceeding, it is important to point out
to the reader (and remind ourselves) that various

factors constrain the analysis. First, aligned corp-
ora for vocal-tract and facial motion exist for only
two speakers thus far. Were it not for the great
similarity in results obtained for these speakers of
very di�erent languages, we would hesitate to
make any substantive claims based on just two
speakers. However, the similarities are striking
despite the di�erences due to phonetic systems,
temporal organization, and physiognomy. Also,
similar results for related analyses such as the face-
acoustics relation have been obtained for one
French and another English speaker. Second and,
in our opinion, much more serious, the results
obtained re¯ect not only the physical relations
among vocal-tract and facial motions and speech
acoustics, but also the accuracy and resolution
with which the data were acquired, temporally
aligned and mathematically modeled. That is,
some features of the observed phenomena are in-
herent in the system producing them, while other
features are shaped by limitations of the data ac-
quisition techniques and of the mathematical tools
applied in the analysis. For example, all of the
analyses used in this research involve multilinear
estimation techniques. We realize that the various
physiological, kinematic and acoustic aspects of
the speech production system are not related in a
strictly linear fashion. However, such an approach
is a good place to start for at least two reasons: (i)
linear relations can be understood in terms of
straightforward mathematical principles; and (ii)
experience has shown that in spite of the nonlin-
ear features of the systems under analysis, their

Fig. 1. Interrelations analyzed between vocal-tract motion, fa-

cial motion and speech acoustics.
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interrelations are frequently well approximated by
linear models. Naturally, better representations of
the relations analyzed in this paper can, in prin-
ciple, be obtained with more elaborate nonlinear
models. In that case, the performance of such
nonlinear models can be evaluated using the per-
formance of a linear model as a lower bound.

The procedure carried out in the analysis is as
follows. First, vocal-tract and facial position data,
which could not be acquired simultaneously, were
collected in separate sessions for repetitions of the
same utterances. Then, in order to compensate for
timing variations between sessions, vocal-tract and
facial data were temporally aligned using a dy-
namic time warping (DTW) procedure (Rabiner
and Juang, 1993). Next, linear estimators were
used to evaluate how well facial motion can be
predicted from the vocal-tract data alone, and vice
versa. Following the same linear procedure, line
spectrum pair (LSP) parameters (Itakura, 1975;
Sugamura and Itakura, 1986), which are speech
acoustic parameters highly dependent on the
vocal-tract shape, were estimated from the vocal-
tract and facial data. After that, principal compo-
nent analysis (PCA) (Horn and Johnson, 1985) was
used to ®nd the dimensionality of the spaces
spanned by the vocal-tract and facial positions and
by the RMS amplitude and LSP parameters of the
speech acoustics. Finally, singular value decompo-
sition (SVD) (Horn and Johnson, 1985) was used
to ®nd coordinate systems that minimize the
number of components necessary to represent the
linear part of the mappings relating vocal-tract,
face and speech acoustics. These procedural steps
are described in detail in the following sections.

2. Experimentation

Facial motion, vocal-tract motion, and speech
acoustics were measured for two male speakers:
one of American English (EVB) and the other of
Japanese (TK). The two types of kinematic data
had to be recorded in separate experimental ses-
sions, due to fundamental incompatibilities be-
tween the two measurement systems (e.g.,
electromagnetic interference caused by the optical
tracking system). In one session, ``vocal-tract''

motion of points sampled from the midsagittal
lips, jaw and tongue was measured; in the other
session, ``facial'' motion of points sampled from
the cheek(s), lips, lower face (jowls), and chin was
measured. Speech materials included ®ve (four in
the case of TK's facial motion) repetitions of the
sentences shown in Tables 1 and 2. The speech
acoustics were measured in both sessions.

2.1. Speech acoustics

The speech signal was sampled at 10 kHz. For
subsequent acoustic analyses, the frame length and
frame shift were respectively 24 and 16 2

3
ms (cho-

sen to match the sampling rate of the facial motion
described in Section 2.2). Each frame was multi-
plied by a Hamming window and linear prediction
(LP) analysis of order 10 was carried out. The LP
coe�cients were subsequently converted into line
spectrum pairs (LSP) (Sugamura and Itakura,
1986). The resulting 10 LSP coe�cients, together
with the root mean squared (RMS) amplitude of
the signal, form the set of parameters used to
represent the acoustics of each speech frame. In
matrix format, the sequence of M frames that
compose a given sentence k is expressed here as

Fk � �f 1k f 2k . . . f Mk�; �1�
where

f mk � �f1mk f2mk . . . f11mk�T: �2�
In the equation above f1mk . . . f10mk are the LSP
parameters, f11mk is the RMS amplitude of frame m

Table 1

English sentences

When the sunlight strikes raindrops in the air, they act like a

prism and form a rainbow.

Sam sat on top of the potato cooker and Tommy cut up a bag

of tiny potatoes and popped the beet tips into the pot.

Table 2

Japanese sentences

Obaasan wa kawa e sentaku ni dekakemashita.

Obaasan wa momo o hirotte ie ni motte kaerimashita.

Momo o watte miru to naka kara otokonoko ga detekimashita.

Otokonoko wa Momotaro to nazukeraremashita.

Obaasan wa kibi dango o motasemashita.
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of sentence k, and ���T denotes vector transpose.
Thus, each frame of speech is represented by
Nsp � 11 parameters.

LSP parameters were preferred to other LPC-
based representations such as PARCOR or LPC-
cepstra for two reasons: (i) their temporal
interpolation is better, and (ii) they are closely
related to the resonant frequencies (formants) of
the vocal-tract and, consequently, to the vocal-
tract geometry (Schroeder, 1967; Mermelstein,
1967; Yehia and Itakura, 1994, 1996; Yehia et al.,
1996). These properties are highly desirable in our
analysis because they should provide a more
straightforward mapping between the acoustics
and the vocal-tract and facial trajectories, which
are themselves continuous in time and directly
related to the vocal-tract geometry.

2.2. Facial motion

Motion of the face and lips is represented by the
three-dimensional (3D) trajectories of infrared
LEDs (ireds) placed on the cheek, chin and around
the vermilion border of the lips, as shown for the
two subjects in Fig. 2(b) and (c). The ireds used on
the lips were 3±4 mm in diameter and about 3 mm
thick. The ireds placed elsewhere on the face were

7±8 mm in diameter with the same base thickness.
For EVB, Nfc � 12 ireds were placed on one side of
the face (to accommodate contralateral measuring
sites for muscle EMG activity). For TK, Nfc � 18
ireds were placed approximately symmetrically on
both sides of the face. The position of the ireds was
measured with an OPTOTRAK(Northern Digital)
at 60 Hz for TK and 125 Hz, with subsequent
downsampling to 60 Hz, for EVB. Measurement
accuracy for this system is exceptionally high at
better than 0.02 mm (for dynamic test results, see
(Vatikiotis-Bateson and Ostry, 1995)). The 3D
position data were placed in arrays of the follow-
ing form for subsequent analysis:

Xk � �x1k x2k . . . xMk�; �3�
where

xmk � �x1mk x2mk . . . x3Nfcmk�T: �4�
fx1mk; x4mk; . . . ; x�3Nfcÿ2�mkg, fx2mk; x5mk; . . . ;
x�3Nfcÿ1�mkg and fx3mk; x6mk; . . . ; x3Nfcmkg are

respectively the vertical, lateral and protrusion
coordinates of the Nfc (Nfc � 12 for EVB and
Nfc � 18 for TK) facial ireds for the mth frame of
sentence k.

2.3. Vocal-tract motion

Vocal-tract motion was tracked electromagnet-
ically using seven small transducers placed mid-
sagittally on the tongue (4), upper and lower lips
(2) and the lower incisors (1) for the jaw. Place-
ments are shown in Fig. 2(a). The data for the two
subjects were acquired at two locations (EVB at
Haskins Laboratories; TK at ATR) using similar
magnetometers (EMMA) and techniques (Perkell
et al., 1992). Data were acquired at 500 Hz for TK
and at 625 Hz for EVB. Data for both subjects
were hardware ®ltered at 200 Hz during data ac-
quisition. Subsequent signal processing di�ered for
the two data sets, due in part to di�erences in
signal quality for the two systems. Before con-
verting the raw voltages to distances, EVB's data
were ®ltered with a triangular window set at 20 Hz.
After voltage-to-distance (V2D) conversion, the
same window was applied again, followed by head
correction and coordinate system orientation (to a
bite plane). Finally, the data were downsampled to

Fig. 2. Position of markers used for OPTOTRAK (a, EVB and

b, TK) and EMMA (c) measurements. Markers in black were

used for temporal alignment.
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60 Hz in order to match the sampling rate of the
facial data. TK's data, on the other hand, were
low-pass ®ltered incrementally in a succession of
steps using a bi-directional butterworth ®lter (or-
der 4� 2), followed by decimation. Ultimately,
signals were ®ltered at 10 Hz and downsampled to
60 Hz before V2D conversion. After conversion
and head correction, the data were ®ltered again at
7.5 Hz using the same ®lter design.

The matrix representation of the data is as
follows:

Yk � �y1k y2k . . . yMk�; �5�
where

ymk � �y1mk y2mk . . . y14mk�T: �6�
fy1mk; y3mk; . . . ; y13mkg and fy2mk; y4mk; . . . ; y14mkg
are the abscissas and the ordinates of the seven
midsagittally placed sensors for the mth frame of
sentence k.

3. Analysis

In this section we describe the procedures used
to examine the interrelation of the three types of
experimental data.

3.1. Temporal alignment

Even though the same target sentences were
produced in the two experimental sessions for each
subject, the vocal-tract and facial motion data
were not recorded simultaneously. Therefore, be-
fore any other comparison can be made between
the two data sets, it must be determined to what
extent they can be spatiotemporally aligned. There
will be di�erences at least on the order of those
observed between any two repetitions of an ut-
terance. Other sources of variability may be the
amount of time between experimental sessions (2
years for EVB; 40 min for TK), and the di�erent
degrees of invasiveness (e.g., markers glued to the
tongue during facial measurements for TK, the
presence of tongue-muscle EMG insertions during
vocal-tract measurements for EVB).

In addition to common target utterances, the
two data sets share midsagittal measures of upper

and lower lip position, and to an extent position of
the jaw-chin (direct attachment to the mandible
versus on the skin surface under the chin). These
``common'' measures, denoted by the black
markers in Fig. 2, were used to combine the vocal-
tract and facial motion data through application
of a temporal alignment (DTW) procedure (Ra-
biner and Juang, 1993). The facial data were used
as references for the alignment.

The alignment process consists of ®nding the
monotonically nondecreasing function

q : �1;M � 7! �1;M 0�; �7�
where M and M 0 are the number of frames in the
reference and aligned sentences, respectively. De-
noting by C the indices of the trajectories followed
by the common measures for each sentence, this
function minimizes the Euclidean distance jj � jjC,
de®ned by

kXk ÿ Y lkC �
XM

m�1

������������������������������������X
i2C

�ximk ÿ yiq�m�l�2
r

; �8�

between the trajectories followed by the common
measures for each sentence (com in the equation
above). Fig. 3 shows an example of the e�ects of
temporal alignment on the temporal patterns of
upper and lower lips.

Setting aside for later testing one utterance pair,
containing one utterance from the facial corpus
and one from the vocal-tract corpus, training sets
for each speaker were constructed by performing
temporal alignment (DTW) between all possible
pairs of repetitions (4� 4� 5� 5 � 41 for EVB
and 4� 3� 4� �5� 4� � 92 for TK) of the same
utterance. The two utterances set aside were then
aligned and used for testing.

Before applying the alignment procedure, the
correlation coe�cients between the common
measures ranged between approximately 0.7 and
0.8. After alignment, the correlation averaged over
all possible pairings was 0.95 (s.d. 0.02) for EVB
and 0.93 (s.d. 0.02) for TK. These results are far
better than if we had aligned the two data sets
using acoustic instead of articulator parameters.
Alignment of the acoustics would have required a
larger feature vector (e.g., the 10 LSP parameters
described below), whereas for the alignment of
common articulators, each articulator had a
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principal axis of motion that proved to be stable
across the two data sets. Therefore, only three
components were needed. A second, easily ob-
served, advantage of the articulator-based align-
ment is its greater stability over time than the
acoustics (e.g., Tiede and Vatikiotis-Bateson,
1994).

Finally, even after temporal alignment, neither
the LSP parameters nor the RMS amplitudes co-
incide for the two data sets. Therefore, the mean
value of both sets of speech acoustic parameters
was used in the analysis of the relations between
speech acoustics and the combined system formed
by the face and vocal-tract.

From this point on, the analysis is based on the
temporally aligned sequences of measurement
vectors (face, vocal-tract and speech acoustics).

3.2. Linear estimation

A straightforward way to evaluate the interre-
lation of the di�erent sets of data collected is to use
linear estimators to measure to what extent one
data set can be determined from another. The in-
terrelation under analysis can even be inherently
nonlinear, in which case a nonlinear estimator
might do a better job, but a linear estimator is
always a good place to begin and is often su�cient
to obtain a satisfactory model. This proved to be
the case for most of the relations analyzed in the
following sections.

3.2.1. Vocal-tract and face
An a�ne transformation that takes a vector y of

vocal-tract marker positions and gives ~x, the esti-
mated value of the measured vector x of facial
positions, can be represented as

~xÿ lx � Tyx�yÿ ly� �9�
and, making the estimation error e between x and
~x explicit,

xÿ lx � Tyx�yÿ ly� � e; �10�
with lx � E�x� and ly � E�y� being the expected
values of y and x. If e represents the part of
x0 � xÿ lx that is uncorrelated with (orthogonal
to) y0 � yÿ ly then, by de®nition, E�eyT

0 � � 0 and

E�x0yT
0 � � TyxE�y0yT

0 �: �11�
Assuming that the components of y are linearly
independent, the inverse E�y0yT

0 �ÿ1
is de®ned and

Tyx � E�x0yT
0 �E�y0yT

0 �ÿ1
: �12�

In this case, it can be shown that ~x is the minimum-
variance unbiased estimator of x which contains the
information about x that can be linearly extracted
from y (Zacks, 1971).

In order to determine the ``true'' values of lx, ly

and Tyx, an in®nite statistical ensemble of obser-
vations would be necessary to determine the ex-
pectations E�x�, E�y�, E�x0yT

0 � and E�y0yT
0 �. Such an

ensemble is, naturally, not available. Therefore, all

Fig. 3. Upper (UL) and lower (LL) lip patterns acquired during

EMMA (black lines) and OPTOTRAK (gray lines) sessions.

The upper panel shows the original patterns; the lower panel

shows the patterns after temporal alignment. The correlation

coe�cients associated with the pairs of temporal patterns are

given for the upper and lower lips on the right.
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that can be done is to estimate these expectations
from the ®nite set of training data that is available.
This is done as follows.

First, all the frames in the sentences of the vo-
cal-tract and facial data training sets are arranged
in single matrices

Y � �y1 y2 . . . yMtr
�; �13�

X � �x1 x2 . . . xMtr
�; �14�

where Mtr is the number of vectors contained in the
training set. (For EVB Mtr � 12,000 and for TK
Mtr � 18,000.) The expected values of x and y are
then approximated as

lx � E�x� � 1

Mtr

XMtr

m�1

xm; �15�

ly � E�y� � 1

Mtr

XMtr

m�1

ym: �16�

These values are then subtracted from each row of
X and Y yielding

Y0 � Yÿ ly �17�

� �y01 y02 . . . y0Mtr
�; �18�

X0 � Xÿ lx �19�

� �x01 x02 . . . x0Mtr
�: �20�

Tyx is now approximated as

Tyx � E�x0yT
0 �E�y0yT

0 �ÿ1 � X0Y
T
0 �Y0Y

T
0 �ÿ1

: �21�
In the approximations above it is assumed that the
number of training vectors Mtr contained in the

ensembles X and Y are su�ciently large and that
the joint probability distribution of x and y is
suitably well behaved, so that the deviations from
the true values are acceptable. The Pearson prod-
uct-moment correlation coe�cient Rx~x between
measured (X) and estimated ( ~X) facial data can
then be estimated by the equation

Rx~x � r2
x~x

rxr~x
� tr�E�x0~xT

0 �����������������������������������������������
tr�E�x0xT

0 ��tr�E�~x0~xT
0 ��

p �22�

� tr�X0
~XT

0 ���������������������������������������
tr�X0XT

0 �tr� ~X0
~XT

0 �
q ; �23�

where X0 � X ÿ lx and ~X0 � ~X ÿ lx. In our
analysis, Rx~x was calculated using one utterance
(200±400 frames) of one sentence as test data and
the remaining utterances as training data. (Utter-
ances recorded during facial and vocal-tract mea-
surements were combined using the procedure
described in Section 3.1 yielding �12,000 training
frames for EVB and �18,000 for TK.) By repeat-
ing the computation for all possible combinations
of training and test data (10� 10 � 100 combi-
nations of facial and vocal-tract utterances for
EVB and 16� 20 � 320 for TK) it was possible to
determine the average value of Rx~x across the
corpus (0.91 for both EVB and TK) as well as its
standard deviation (0.02 for EVB and 0.03 for
TK). These results are summarized in Tables 3
and 4.

At this point two important observations must
be made. The ®rst is about using correlation coef-
®cients and not an absolute distance such as the
RMSE (root mean squared error). Although the

Table 3

Estimation performance: EVB

EVB Estimate

Corr. coef. Vocal-tract Face Acoustics

mean (s.d.) (EMMA) (OPTOTRAK) (LSP) (RMS Amp.)

M Vocal-tract ) 0.91 (0.02) 0.69 (0.02) 0.75 (0.05)

E Face 0.78 (0.05) ) 0.73 (0.07) 0.83 (0.03)

A Face + vocal-tract ) ) 0.78 (0.04) 0.85 (0.03)

S Acoustics 0.61 (0.06) 0.72 (0.02) ) )
U Face + acoustics 0.83 (0.05) ) ) )
R

E
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latter seems to be a natural choice since ~x is the
minimum-variance (as opposed to maximum-cor-
relation) estimator of x, the former was chosen
since it quanti®es how good the global match be-
tween signal shapes is, whereas the RMSE is
strongly in¯uenced by the regions of high ampli-
tude (where larger errors are more likely to occur)
(Zacks and Thomas, 1994). Admittedly, more in-
formation would be available if both correlation
coe�cient and RMSE had been examined in more
detail. This point is currently being analyzed. The
second observation is with respect to the choice of
training sets: it was observed that the results
change depending on the amount and type of
training data. The corpora analyzed for the two
subjects contain repetitions of a relatively small
number of sentences. If the same number of dif-
ferent sentences were used, we would expect the R
to be lower. This issue is being investigated on a
larger set of spontaneously generated sentences for
subject EVB.

The same procedure can be used to build an
estimator to recover a matrix Y of vocal-tract
marker positions from a matrix X of facial marker
positions. The estimation is given by

~Y � Txy�X ÿ lx� � ly; �24�
with

Txy � Y0X
T
0 �X0X

T
0 �ÿ1

: �25�
When applied to all possible combinations of
training and test data, the mean correlation coef-
®cient Rx~x between measured and recovered vocal-
tract vectors was 0.78 (s.d.� 0.05) for EVB and
0.83 (s.d.� 0.08) for TK.

The estimation of face from vocal-tract data (Rx~x)
is more reliable than the recovery of vocal-tract
positions from the face (Ry ~y) ± i.e., Rx~x is greater than
Ry ~y . This supports the notion (but does not prove)
that the vocal tract shapes the face or, being more
conservative, Rx~x greater than Ry ~y indicates that
there are more events inside the vocal-tract which
are uncorrelated with (but not necessarily indepen-
dent of) facial motion than the opposite. The larger
standard deviations associated with Ry ~y indicate
that the degree of vocal-tract recovery is more ut-
terance-speci®c than for face estimation.

For both facial estimation from vocal-tract and
vocal-tract recovery from face, correlation coe�-
cients were also computed for individual markers.
Illustrations for one sentence are given in Figs. 4
and 5. Note that the lowest correlation coe�cients
are usually associated with the smallest amplitudes
of motion. Also important is the relatively good
match between the sets of common measures (JAW/
CHIN, UL and LL). Except for a few regions, the
trajectories follow basically the same pattern,
indicating that the combination of data collected in
two di�erent measurement sessions does not cause
large discrepancies in the ®nal results.

The correlation results obtained for both sub-
jects are summarized in Tables 5±8. Although they
contain a large amount of information, several
points common to both subjects deserve special
attention. First, among the common measures, the
upper lip exhibits the lowest correlation coe�-
cients. This can be explained in terms of the vari-
ability across experimental sessions and the fact
that the linear estimation process performs better
for higher amplitude motion. Second is the good

Table 4

Estimation performance: TK

TK Estimate

Corr. coef. Vocal-tract Face Acoustics

mean (s.d.) (EMMA) (OPTOTRAK) (LSP) (RMS Amp.)

M Vocal-tract ) 0.91 (0.03) 0.63 (0.05) 0.50 (0.14)

E Face 0.83 (0.08) ) 0.73 (0.03) 0.75 (0.09)

A Face + vocal-tract ) ) 0.76 (0.04) 0.77 (0.09)

S Acoustics 0.60 (0.06) 0.66 (0.08) ) )
U Face + acoustics 0.84 (0.08) ) ) )
R

E
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matching observed for the non-midsagittal facial
components. This shows their strong correlation
with midsagittal events. Finally there is the some-
what surprising result that the tongue components
can be recovered quite well from facial motion.
How much information about tongue motion is
available from the face depends on the utterance,
as indicated by the wide range of correlation co-
e�cients obtained across the corpus, 0.6±0.9.

3.2.2. Acoustics versus vocal-tract and face
Using exactly the same procedure described

above for the analysis of the relations between
vocal-tract and face, it is possible to assess the
correlations between the vocal-tract acoustics ( f )
and the motion of the vocal-tract (y) and the face
(x). Six relations were analyzed:

1. acoustics ( f ) as a function of face (x);
2. acoustics ( f ) as a function of vocal-tract (y);
3. acoustics ( f ) as a function of face (x) and vocal

tract (y);
4. face (x) as a function of acoustics ( f );
5. vocal-tract (y) as a function of acoustics ( f );
6. vocal-tract (y) as a function of acoustics ( f ) and

face (x).

The results are summarized in Tables 3 and 4.
Although most of the facial position (x) informa-
tion can be recovered from the vocal-tract data (y)
as seen in the previous section, it is interesting to
note that estimation of the speech acoustics ( f )
from facial measures (x) is considerably better
than from vocal-tract measures (y). Indeed, when
the speech acoustics f are estimated from both face
x and vocal-tract y, the results are only slightly
better (�1 s.d.) than those obtained from face
alone. Several possible explanations for these re-
sults are: the presence of non-midsagittal infor-
mation in the face measures, the larger number of
markers and better accuracy of facial measure-
ments compared to those of the midsagittal vocal-
tract, and the higher degree of nonlinearity (which
cannot be modeled with the linear estimator used)
in the mapping between the vocal-tract space and
the speech acoustics space. This is a typical case, as
mentioned in Section 1, where a result may depend
more on limitations of the measurement and

Fig. 4. Temporal patterns for the face estimated from vocal-

tract data (gray) are compared with measured patterns (black).

The correlation coe�cients associated with the pairs of tem-

poral patterns are given on the right.

Fig. 5. Temporal patterns for the vocal tract estimated from

facial data (gray) are compared with measured patterns (black).

The correlation coe�cients associated with the pairs of tem-

poral patterns are given on the right.
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modeling techniques than on the physical charac-
teristics of the process.

3.3. Dimensionality analysis

The marker positions measured for the vocal-
tract and face as well as the LSP parameters ex-

tracted from the speech signal are strongly corre-
lated. Although a large number of markers and
acoustic parameters may improve the representa-
tion of the system under analysis, it also makes the
results more di�cult to interpret. A way to cope
with this situation is to express the sets of data in
terms of orthogonal components. By doing so, no

Table 5

Individual markers: vocal-tract from face (EVB)

EVB corr. coef. marker Horizontal Vertical

mean (s.d.) mean (s.d.)

1 Jaw 0.88 (0.02) 0.96 (0.01)

2 Upper lip 0.91 (0.05) 0.89 (0.02)

3 Lower lip 0.83 (0.02) 0.95 (0.01)

4 Tongue tip 0.66 (0.11) 0.68 (0.07)

5 Tongue blade 0.66 (0.11) 0.57 (0.07)

6 Tongue body 0.71 (0.09) 0.60 (0.08)

7 Tongue rear 0.72 (0.07) 0.63 (0.08)

Table 6

Individual markers: vocal-tract from face (TK)

TK corr. coef. Marker Horizontal Vertical

mean (s.d.) mean (s.d.)

1 Jaw 0.88 (0.04) 0.89 (0.04)

2 Upper lip 0.87 (0.06) 0.82 (0.07)

3 Lower lip 0.91 (0.03) 0.94 (0.02)

4 Tongue tip 0.81 (0.09) 0.76 (0.11)

5 Tongue blade 0.83 (0.08) 0.80 (0.09)

6 Tongue body 0.83 (0.07) 0.72 (0.12)

7 Tongue rear 0.84 (0.06) 0.60 (0.10)

Table 7

Individual markers: face from vocal-tract (EVB)

EVB corr. coef. marker Vertical Lateral Protrusion

mean (s.d.) mean (s.d.) mean (s.d.)

1 Chin 0.95 (0.02) 0.50 (0.09) 0.94 (0.01)

2 Upper lip 0.83 (0.03) 0.58 (0.14) 0.62 (0.12)

3 Lower lip 0.94 (0.02) 0.66 (0.06) 0.90 (0.01)

4 Middle chin 0.94 (0.02) 0.63 (0.05) 0.92 (0.01)

5 Upper chin 0.93 (0.02) 0.76 (0.05) 0.93 (0.01)

6 Mid-lower lip 0.94 (0.01) 0.44 (0.22) 0.88 (0.02)

7 Lip corner 0.89 (0.03) 0.86 (0.01) 0.85 (0.02)

8 Mid-upper lip 0.85 (0.06) 0.52 (0.16) 0.67 (0.04)

9 Cheek 0.90 (0.03) 0.86 (0.02) 0.89 (0.03)

10 Cheek 0.85 (0.05) 0.73 (0.05) 0.85 (0.02)

11 Cheek 0.82 (0.07) 0.63 (0.05) 0.78 (0.04)

12 Cheek 0.84 (0.07) 0.72 (0.07) 0.84 (0.07)

32 H. Yehia et al. / Speech Communication 26 (1998) 23±43



matter how many markers or acoustic parameters
are used, a given set of data will be represented by a
number of components appropriate to the dimen-
sionality of the space being examined. The theory
behind this and the procedures outlined in this sec-
tion are well described in (Horn and Johnson, 1985).

3.3.1. Principal component representation
When one set of data, e.g., for the face, is ana-

lyzed independently of other sets, a direct way to
reduce the number of components to match the
dimensionality of the space that contains the data is
by means of PCA. The procedure carried out to
perform PCA is outlined here for the case of facial
vectors (x), but exactly the same procedure was used
to analyze vocal-tract vectors (y) and RMS ampli-
tude/LSP parameter vectors ( f ) (Fig. 6). The steps
are as follows. We start with the matrix containing
the concatenation of all the sentences that form the
facial data training set with the mean removed.

X0 � Xÿ lx �26�
� � x01 x02 . . . x0Mtr

�; �27�
where Mtr is the number of vectors contained in the
training set. The next step is to compute the co-
variance matrix

C xx � 1

Mtr

X0X
T
0 �28�

and use SVD to express it as

C xx � USxxU
T: �29�

In the equation above, U is a unitary matrix
whose columns are the eigenvectors (normalized
to unit Euclidean norm) of C xx. Sxx is a diagonal
matrix containing the corresponding eigenvalues
of C xx. The sum of the eigenvalues equals the total
variance observed in C xx. Therefore, if the sum of
the ®rst P largest eigenvalues equals a given pro-
portion (e.g., 99%) of the sum of all eigenvalues,
then the ®rst P eigenvectors of C xx (contained in
the ®rst P columns of U) will equal this propor-
tion of the total variance of the training set.
Hence, a given vector x0 can be arbitrarily well
approximated as a linear combination of the ®rst
P eigenvectors of C xx (which are the ®rst P prin-
cipal components of X), provided that P is su�-
ciently large. For most of our analyses, 99% was
found to be su�cient. Calling U x the matrix
containing the ®rst P columns of U, the procedure
used is

x � Uxpx � lx; �30�

Table 8

Individual markers: face from vocal-tract (TK)

TK corr. coef. marker Vertical Lateral Protrusion

mean (s.d.) mean (s.d.) mean (s.d.)

1 Chin 0.93 (0.03) 0.50 (0.15) 0.93 (0.02)

2 Upper lip 0.77 (0.08) 0.43 (0.26) 0.87 (0.06)

3 Lower lip 0.93 (0.02) 0.36 (0.18) 0.93 (0.02)

4 Mid-chin 0.94 (0.02) 0.40 (0.16) 0.91 (0.03)

5 Right mid-chin 0.94 (0.02) 0.84 (0.05) 0.92 (0.03)

6 Left mid-chin 0.94 (0.02) 0.85 (0.06) 0.92 (0.03)

7 Right mid-lower lip 0.93 (0.02) 0.64 (0.25) 0.93 (0.02)

8 Left mid-lower lip 0.92 (0.03) 0.65 (0.15) 0.92 (0.03)

9 Right lip corner 0.90 (0.02) 0.79 (0.09) 0.89 (0.05)

10 Left lip corner 0.90 (0.03) 0.86 (0.05) 0.91 (0.03)

11 Right mid-upper lip 0.76 (0.07) 0.80 (0.08) 0.86 (0.06)

12 Left mid-upper lip 0.73 (0.10) 0.76 (0.18) 0.87 (0.06)

13 Right cheek 0.87 (0.03) 0.86 (0.05) 0.87 (0.03)

14 Right cheek 0.83 (0.06) 0.80 (0.12) 0.82 (0.09)

15 Right cheek 0.84 (0.04) 0.81 (0.10) 0.81 (0.09)

16 Left cheek 0.87 (0.04) 0.88 (0.04) 0.87 (0.03)

17 Left cheek 0.85 (0.05) 0.86 (0.05) 0.86 (0.06)

18 Left cheek 0.87 (0.04) 0.86 (0.05) 0.87 (0.05)
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with

px � UT
x �xÿ lx� �31�

being the vector of principal component coe�-
cients. In the same way, vocal-tract vectors (y) and
RMS amplitude/LSP parameter vectors can also
be expressed in terms of their principal compo-
nents as shown below.

y � Uypx � ly; �32�

py � UT
y �yÿ ly�; �33�

f � Uf pf � lf ; �34�

pf � UT
f �f ÿ lf �: �35�

Fig. 7 shows the relation between the number
of eigenvectors and the amount of the total vari-
ance (sum of all eigenvalues) accounted for by
them for the acoustics f (dashed line), face x (black
solid line) and vocal-tract y (gray line). Note the
small number of eigenvectors (�8) needed to ac-
count for 99% of the total variance of the data.

3.3.2. Singular value decomposition
Principal component analysis is a useful way to

determine the dimensionality of the spaces being
analyzed. The results of the PCA can then often be
used to reduce the dimensionality by eliminating
components whose contribution to the total vari-
ance is small, resulting in a more compact repre-
sentation of the data. However, in our analysis, the
objective is to characterize the relation between
one space and another. Unfortunately, there is no
a priori reason to believe that the dimensionality
reduction achieved in one space is optimum for
describing the data measured in another space. In
particular, components that have been eliminated
for their small contribution to the behavior in one
space may be critical to the estimation of values in
the other space. For example, large variations of
the position of the tongue may cause small varia-
tions in the position of the markers on the cheeks

Fig. 6. Speech LSP parameters linearly estimated from di�erent

sets of data (gray lines) are compared with measured data

(black lines). The correlation coe�cients between each pair of

temporal patterns are shown on the right. (For clarity, only the

lowest of each line spectrum frequency pair is plotted.)

Fig. 7. Portions of the total variance accounted for are plotted

as functions of the number of principal components used to

represent facial (black solid line), vocal-tract (gray line) and

speech acoustic parameters (dashed line).
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due to the way pressure is built up inside the oral
cavity and released during a plosive sound. This
small motion associated with pu�ng of the cheeks
might easily be eliminated from a principal com-
ponent representation that takes into account only
the strongest components.

A way around this problem is to map the data
for the vocal-tract, facial and acoustic spaces onto
a common coordinate system. In this section, this
procedure is described for the case of the mapping
of the space spanned by the set of 2D Cartesian
components of the Nvt markers of the vocal-tract
space to the space spanned by the set of 3D Car-
tesian components of the Nfc markers of the facial
space. The same method is applied to the map-
pings between the facial and vocal-tract spaces and
the acoustic space, de®ned by LSP and RMS am-
plitude parameters.

From a geometric point of view, the objective is
to rotate the coordinate systems of the vocal-tract
and facial spaces so that each component of one
space is maximally correlated with one and only
one component of the other space and uncorre-
lated with (orthogonal to) the others. From the
point of view of matrix analysis, the coordinate
system rotation used to represent a vector is ac-
complished by multiplying a unitary matrix by this
vector. The desired rotations for linearly aligning
the components of the two spaces are determined
using SVD,

Tyx � U yxSyxV
T
yx: �36�

In the equation above, U yx is a unitary matrix
whose columns are the eigenvectors (normalized to
unit Euclidean norm) of TyxT

T
yx, and the corre-

sponding eigenvalues are the squares of the non-
zero entries of the matrix Syx. V yx is a unitary
matrix whose columns are the eigenvectors of
TT

yxTyx. Syx is a 2Nvt � 3Nfc matrix of the form

Syx �
s1 . . . 0 0 . . . 0

..

. . .
. ..

. ..
. ..

.

0 . . . s2Nvt
0 . . . 0

2664
3775; �37�

where fs1; . . . ; s2Nvt
g are the singular values of Tyx.

Note that as the last 3Nfc ÿ 2Nvt columns of Syx

contain only zeros, the last 3Nfc ÿ 2Nvt columns
(eigenvectors) of V yx have no in¯uence on Tyx.

These vectors span the null space of Syx whereas
the ®rst 2Nvt columns span the range of Syx.

Now, the products

rx � UT
yx�xÿ lx�; �38�

ry � VT
yx�yÿ ly� �39�

de®ne rotations of the coordinate systems of x and
y so that, in the new coordinate systems, each of
the 2Nvt components of rx is correlated (aligned)
with one and only one component of ry , being
orthogonal to all other components.

The subspace spanned by the last 3Nfc ÿ 2Nvt

components of ry is a null space, because these
components have no counterpart in rx. This means
that, using linear estimators, the null space for the
face can neither be determined from the vocal-
tract nor be used to recover the vocal-tract from
the face. If the null space components represented
a signi®cant part of the total variance present in
the data, it would mean that a considerable
amount of facial motion could not be linearly de-
termined from vocal-tract motion. Fortunately,
the null space accounts for only 0.3% and 0.8% of
the variance present in the data collected for EVB
and TK, respectively. Thus, dropping the compo-
nents of the null space and working only with the
components of ry that span the range of Syx does
not imply any serious loss of information in the
analysis.

A negligible null space, however, does not
guarantee a strong correlation between the two
aligned spaces, since the degree of correlation be-
tween them does not depend on their coordinate
systems. What is obtained with the alignment
procedure described above is the representation of
the linear mapping between the spaces being ana-
lyzed using a reduced set of components. This is
illustrated in Fig. 8, which shows that only four or
®ve components are needed to represent that part
of the behavior for one system (face or vocal-tract)
that can be determined from the other system.

4. Articulatory consequences

In this section an articulatory interpretation is
given for important points of the results presented
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in the previous section. First we describe the main
components of the coupling between the vocal-
tract and the face. After that we focus speci®cally
on the recovery of tongue motion from face.

4.1. Characterizing coupled motion

For the mapping between the vocal-tract and
the face, a simple way to understand the articula-
tory meaning of the ``cross-domain'' components
described in the previous section is to plot the
geometrical variations caused by each component
in both domains. Fig. 9 (EVB) and Fig. 10 (TK)
illustrate the vocal-tract and facial motion char-
acteristics associated with the ®rst three compo-
nents in order of importance. The vocal-tract
pro®le is shown on the left and the face-plane view
on the right. Solid black dots indicate the average
position of the markers while triangles pointing up
and down indicate respectively positive and nega-
tive values for the range of motion of the com-
ponents. The solid lines indicate tongue and lip
contours. A careful inspection of Figs. 9 and 10
indicates that, for both subjects, the ®rst and most
important component (top panels) is associated
with jaw motion, which ``carries'' the tongue and
lower lip with it. The second component for EVB
(middle panel) and the third (bottom panel) for

TK are associated with the articulatorily antago-
nistic gestures of raising the tongue tip while
opening the lips (e.g. for apicals, /t,d,s,z/) and
lowering the tongue tip while closing the lips (e.g.
/u/). Finally, the third component for EVB (bot-
tom panel) and the second for TK (middle panel)
are associated with raising and lowering the ton-
gue inside the vocal tract. On the face, the third
component is associated with lateral motion of
markers o� the midsagittal plane. Upper lip mo-
tion is also observed for EVB, but not for TK.
Except for this last di�erence of upper lip behav-
ior, note that the motion associated with the three
components described above coincides to a large

Fig. 8. Solid lines. Black ± the portion of total facial variance

accounted for as a function of the number of vocal-tract com-

ponents used to represent the face. Gray ± the portion of total

vocal-tract variance accounted for as a function of the number

of facial components used to represent the vocal tract. Black

(gray) dashed lines: ± the portion of vocal-tract (facial) variance

accounted for as a function of the number of vocal-tract (facial)

principal components used in the representation.

Fig. 9. Lines indicate tongue (left panels) and lips (right panels)

contours. For subject EVB: Black dots ± the average position of

vocal-tract (left panels) and facial (right panels) markers. Top

panel ± ®rst coupled component weighted by 1.5 s.d. of its

variance is added to (gray n) and subtracted from (gray ,) the

average position. Middle panel ± second coupled component

weighted by 3 s.d. of its variance is added to (gray n) and

subtracted from (gray ,) the average position. Bottom panel ±

third coupled component weighted by 3 s.d. of its variance is

added to (gray n) and subtracted from (gray ,) the average

position.
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extent for both subjects. This occurs in spite of the
fact that English (spoken by EVB) and Japanese
(spoken by TK) exhibit very di�erent characteris-
tics, suggesting that the coupling between the vo-
cal-tract and the face is more closely related to
human physiology than to language-speci®c pho-
netic features.

4.2. Tongue recovery

One of the most interesting outcomes of this
study is the degree to which tongue position can be
recovered from the facial motion data. Although
the recovery results were not equally high for the

two speakers, this unexpected result warrants
further examination. Fig. 11 shows selected re-
covery results for both speakers. Vertical and
horizontal temporal patterns are shown for ob-
served and recovered position of two markers
placed on the tip and body of the tongue. Also
shown are the audio waveform and observed and
predicted values for vertical jaw motion and for
the RMS amplitude of the acoustic signal. For the
examples shown in the ®gure, correlation coe�-
cients for recovered tongue position are generally
higher for TK (0.82±0.91) than for EVB (0.70±
0.76). (See Tables 3 and 4 for general results.) As
in the other analyses (e.g., prediction of face from
vocal-tract), estimation parameters are derived
from training sets for each speaker that exclude
only the test sentence shown.

We now consider possible physical sources for
the statistical coupling between face and tongue. A
direct anatomical or physiological connection be-
tween the tongue, particularly the tongue tip, and
the face is highly unlikely. The tongue does not
touch the cheeks during speech. Physiologically,
extrinsic tongue muscle activity may induce con-
comitant activity of orofacial muscles such as the
platysma, a sheathlike muscle beneath the fascia,
but it probably has no visible consequence on fa-
cial motion.

Since positioning the jaw deforms the face
through direct physical contact and is, in fact, the
strongest component of facial motion for both
speakers, the most likely connection between the
tongue and the face is indirectly by way of the jaw.
Unfortunately, the exact nature of that coupling is
not easily determined. Anatomically, the tongue
body is connected to the jaw via the musculature
of the tongue ¯oor (e.g., the digastric), but the
coupling is non-rigid. Therefore, the biomechani-
cal coupling of jaw and tongue may be highly
uncorrelated at locations remote from the tongue
root. That is, the tongue tip should be least sus-
ceptible to such coupling because it is structurally
separated from the tongue ¯oor by the greatest
amount of soft tissue. Support for this claim can
be deduced from the ®nding that the correlation
among a series of midsagittal ¯esh-point tongue
measures, similar to those made here, decreases as
a function of intervening distance on the tongue

Fig. 10. Lines indicate tongue (left panels) and lips (right pan-

els) contours. For subject TK: Black dots ± the average position

of vocal-tract (left panels) and facial (right panels) markers.

Top panel ± ®rst coupled component weighted by 1.5 s.d. of its

variance is added to (gray n) and subtracted from (gray ,) the

average position. Middle panel ± second coupled component

weighted by 3 s.d. of its variance is added to (gray n) and

subtracted from (gray ,) the average position. Bottom panel ±

third coupled component weighted by 3 s.d. of its variance is

added to (gray n) and subtracted from (gray ,) the average

position.
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surface (Kaburagi and Honda, 1994). Also, local
independence in tongue conformation can be
inferred from the range of inter-marker separa-
tions observed during speech production (Stone,
1990).

In the absence of evidence of a direct structural
coupling, the strong correlations observed in this
study suggest minimally a ``functional'' coupling
between jaw and tongue. This can be seen quali-
tatively in the ®gure where vertical tongue tip and
jaw position track each other very closely. Mis-
matches between recovered and observed tongue
positions are most likely to occur when observed
tongue and jaw motion diverge or ``decouple''. Of
course, the jaw's functional role in positioning
``end-e�ectors'' such as the lower lip and tongue is
well-known and forms the basis for our concepts
of articulator coordination (e.g., Kelso and Tuller,

1984; Ostry and Munhall, 1994). However, func-
tional coupling has usually been invoked on the
basis of phonetically de®ned events de®ned in the
temporal domain ± e.g., relative phasing of lip
motion with respect to the jaw cycle (Munhall,
1985; Nittrouer et al., 1988; Saltzman and Mun-
hall, 1989). It is worth noting that in the present
study no temporal analyses were done; all corre-
lations are based only on spatial properties of the
data. The resulting global correlations suggest that
correlated tongue±jaw behavior is basic to pro-
ducing all speech rather than the result of some
higher level phonetic control.

This perspective of the jaw's role is not incom-
patible with the common conception of the pho-
netic speci®cation of articulator coordination, in
which a primary articulator or end-e�ector is as-
sociated with the production of some unit

Fig. 11. Tongue motion recovery from facial data for EVB (left panels) and TK (right panels). Top panels: speech waveform. 2nd to

6th panels: articulatory temporal patterns that were measured (black lines) and recovered from the face (gray lines). Bottom panels:

RMS amplitude of the speech signal that were measured (black lines) and estimated from face (gray lines).
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(phoneme, gesture, etc.) and all other articulators
either play along or are free to vary. However, the
notion of primary articulator may be misleading in
that the covariation of jaw and tongue observed
here appears to cut across such distinctions. For
example, recovery of vertical tongue-tip position is
equally good, if anything slightly better, in those
cases where the tongue-tip is the primary articu-
lator. Although the overall recovery of horizontal
tongue position shown in the ®gure is even more
precise than the recovery of vertical position, a
large portion of the recovery is due to components
unrelated to the jaw (see below). Thus, the jaw
accommodates the positioning, particularly in the
vertical dimension, of the primary tongue articu-
lator, an event that has visible correlates in the
facial motion. Also, requiring further investigation
is the apparent dependency of the tongue-jaw
correlation on speech versus non-speech motions.
For example, in the data shown in the ®gure for
TK, the largest divergence between observed and
recovered vertical tongue position occurs during
the phrasal pause between ``obaasan wa'' and
``kawa e sentaku ni dekakemashita''.

In addition to the indirect coupling of face and
tongue via the jaw, a second indirect source of
coupling may be aerodynamic in nature. As pre-
viously noted in Section 3, the alignment of facial
and vocal-tract components showed that small
components in one domain can have large e�ects
on the recovery of data in the other domain.
Speci®cally, small (often lateral) motions on the
cheeks and face have relatively strong e�ects on
tongue position recovery that is independent of the
motion induced by lip shape or jaw position
changes. Especially strong is the correlation of
these small facial components with horizontal
tongue position. A similar independent contribu-
tion of the ``outer face'' was seen previously for the
estimation of RMS amplitude (Vatikiotis-Bateson
et al., 1996a; Vatikiotis-Bateson and Yehia, 1996).
In both cases, we think this may be due to slight
perturbations of the skin surface caused by sudden
changes in intraoral air pressure. A similar claim
has been made based on structured-light measures
(Carter et al., 1996) much cruder than those pro-
vided by the OPTOTRAK. However, until simul-
taneous measures of intraoral pressure can be

made reliably, this second source of coupling must
remain highly speculative.

5. Discussion

The preceding description of the analysis tech-
niques was fairly technical. It was intended to
describe the analysis techniques and show their
e�ects on the results. Now, we discuss several
conceptual aspects of the analysis.

Temporal alignment. The cross-domain corre-
lation results presented in Tables 3±8 can be con-
sidered conservative. Higher correlations would be
expected if vocal-tract and facial data had been
collected simultaneously. In practice, the correla-
tions obtained are limited by the articulatory and
acoustic variations between utterances spoken in
the separate vocal-tract and face measurement
sessions. Although the temporal alignment (DTW)
did not entirely cancel these variations, the high
degree of their reduction points up the overall
stability of articulatory behavior over time and
across changes in experimental conditions.

Vocal-tract and face. What we have called
``vocal-tract'' and ``face'' are no more than
sparsely distributed ¯esh-point measures of the
vocal-tract and facial surfaces. The fact that the
measured data provide incomplete information
about the structures under analysis is particularly
important in the case of the vocal-tract. It is true
that the few points measured midsagitally along
the anterior tongue, jaw and lips succeed in de-
termining most of the measured facial behavior.
However, they give an estimation of the speech
acoustics that is worse than that obtained from
facial points. Considering that the vocal-tract, and
not the face, shapes the speech acoustics, this
means that the information about the vocal-tract
shape contained in the data measured is not suf-
®cient to determine the part of the speech acoustics
that is linearly related to the vocal-tract geometry.
Also, a large part of the speech acoustics (in par-
ticular F2 which is frequently a�liated to the vo-
cal-tract front cavity) is determined by the oral
cavity geometry. In fact, the recovery of F2 (ex-
tracted from LSP coe�cients estimated from the
face) was quite strong. This is not surprising and
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indicates that acoustically meaningful aspects of
the vocal-tract can be more precisely recovered
from the 3D OPTOTRAK facial data than from
the 2D EMMA data used in this study.

Linearity. In this paper, the analysis has been
restricted to the linear relations among behavioral
domains. The analysis has been su�cient to ac-
count for most of the relations between vocal-tract
and face. This corroborates the notion that during
speech the measured facial behavior is shaped
primarily by the linear mechanical coupling of face
and vocal-tract, and probably not by a functional
coupling that may or may not be linear. Moreover,
a linear mechanical coupling implies that dynam-
ical characteristics such as sti�ness, viscosity and
mass associated with the dynamic coupling be-
tween vocal-tract and face are fairly constant
during speech.

As for modeling relations involving the speech
acoustics, nonlinearities indeed play an important
role in modeling the relations between the acous-
tics and the vocal-tract and facial geometries.
Admittedly, more of the speech acoustics would be
estimated if nonlinear estimators (e.g. arti®cial
neural networks) had been used. However, it is
important to note that simple linear estimators
were su�cient to model a considerable part of the
mappings that were examined (see Tables 3 and 4).
On average, �80% of the variance of the speech
acoustics parameters could be linearly determined
from vocal-tract and facial data. As for the in-
version, �65 of vocal-tract and facial variance
could be recovered from speech acoustics data.

Missing information. Considering the essentially
linear coupling of the vocal-tract and face and the
causal e�ect of the vocal-tract on facial shape,
then why is facial motion not completely deter-
mined by the vocal-tract? Several reasons can be
enumerated. First is the imperfect matching be-
tween data acquired during separate vocal-tract
and face experiments. Second, as just discussed,
the information extracted from the vocal-tract
simply may not be su�cient to determine the en-
tire face. Third is the discrepancy in measurement
accuracy; vocal-tract measurements (0.3±0.5 mm)
were considerably worse than facial measurements
(0.01±0.02 mm). Finally, non-phonetic facial ges-
tures, related to emotion and other communicative

gestures, occur during speech. Such events un-
doubtedly a�ect the spatial and temporal behavior
of the face and need to be carefully examined in
the future.

Cross-domain component orientation. In Sec-
tion 3.3.2 it was shown that the linear relation
between the vocal tract and the face can be rep-
resented by a small number of components (4±8)
derived by aligning the coordinate systems of the
vocal-tract and face spaces. This technique reveals
several important characteristics of the speech
production behavior. First, despite the di�erence
in the number of facial positions tracked for the
two subjects, the dimensionality of the mapping
from the vocal-tract to the face did not vary. This
suggests not only that the face at least was suitably
measured, but also that the cross-domain repre-
sentation is independent of speci®c aspects of the
measurement ± e.g., the number of markers, their
exact position. Second, in the cross-domain
alignment of domain-speci®c components, it was
seen that small components in one space may be
aligned with large components in another. These
small components accounted for small amounts of
the variance in the domain-speci®c principal
component analyses and would often be omitted
by recovery criteria set below 99% of the variance.

Importance. Finally, we consider the wider im-
plications of the ®nding that the interrelation of
vocal-tract, face and speech acoustics can be
characterized by only a small number of compo-
nents. As has already been seen in a number of
presentations (e.g., Yehia et al., 1997; Vatikiotis-
Bateson et al., 1998), results such as these are being
used to generate increasingly realistic facial ani-
mations (see http://www.hip.atr.co.jp/�tkurata).
Unlike other audiovisual animation e�orts, ours
are driven by real time-varying data. This may be
seen as a limitation where the goal is to do text-to-
AV speech. However, synchrony between facial
motion and speech acoustics is never a problem
and there are many potential applications for a
system that can, for example, recover 80% of the
acoustics from analysis of the facial motion, or
perhaps generate facial animation from the
acoustic signal alone. The results of this study have
also shown that problems such as the assumed
necessity of animating the tongue can probably be
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solved, given the high recovery rate (75±90%) of
tongue tip from the face.

In addition to cosmetic realism, this approach
o�ers the possibility of achieving communicative
realism as well. By animating faces using known
couplings among the visible and audible aspects of
speech, we can assess the communicative import of
the visible components on speech perception by
humans and machines.

6. Conclusion

Using a temporal alignment procedure it was
possible to combine vocal-tract motion, facial
motion and speech acoustics data and analyze the
interdependence between them. The results ob-
tained for two subjects show that the vocal-tract
data account for 91% of the total variance ob-
served in the facial data. It was also veri®ed that
�80% of the variance observed in the vocal-tract
data can be recovered from facial data. In partic-
ular, it was observed that even the tongue, which is
not directly coupled to the face, can be well re-
covered. The precision of this recovery is not good
enough for articulatory speech synthesis, but is
possibly su�cient for tongue tip generation during
facial animation in audiovisual speech synthesis.
When the relations between geometrical acoustic
properties of the vocal-tract were analyzed, it was
observed that between 72 and 85% (depending on
subject and utterance) of the variance observed in
LSP parameters can be determined from vocal-
tract and facial data together using a simple multi-
linear estimator. Also noteworthy is the fact that
facial data alone accounts for only �3% less of the
LSP parameter variance than vocal-tract and fa-
cial data together. This gives a quantitative esti-
mation of the amount of speech acoustic
information that can be retrieved from visible in-
formation.

A dimensionality analysis was also carried out.
It was observed that 99% of the variance observed
for each set of data can be well represented with no
more than eight principal components. As for the
interrelations between sets of data, the number of
components necessary to represent the mappings

between them varied between 4 and 8, depending
on the relation being analyzed.

The results obtained can be of practical use in
applications such as audiovisual speech systems
(Vatikiotis-Bateson et al., 1998) as well as in basic
research such as quali®cation and quanti®cation of
the visual information used for the perception of
speech.
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